Poltava State Medical University

Lecture

Pharmacology of drugs that influence efferent innervation. Adrenergic drugs

AUTONOMIC NERVOUS SYSTEM

Autonomic nervous system regulates the function of internal organs.

It is divided into two sections:

- Sympathetic system
- parasympathetic system

They exert opposite actions.

SYMPATHETIC SYSTEM (SANS)

Centers (the 1st neuron): thoraco-lumbal region of the spinal cord Ganglia (the 2nd neuron): near the spinal cord (Thruncus sympaticus)

ADRENERGIC SYNAPSE

TYPES OF ADRENOCEPTORS

LOCATION AND EFFECTS OF α-ADRENOCEPTORS

Receptor	Location	Effect
α1	Blood vessels	Constriction, ↑of BP
	Spleen	Constriction
	Eye	Mydriasis
	Urinary bladder	↑ of sphincter closure
α2	Blood vessels	Constriction
	Pancreas	↓ of insulin release
	All adrenergic	↓ of norepinephrine
	synapses	release

LOCATION AND EFFECTS OF β-ADRENOCEPTORS

Receptor	Location	Effect
β1	Heart	↑ of rate and contractility
	Fat tissue	↑ of lipolysis
β2	Blood vessels	Vasodilation
	Bronchi	Dilation
	Uterus	Relaxation
	Pancreas	↑ of glucagon's release
	Liver	↑ of glycogenolysis
	Skeletal muscles	↑ of glycogenolysis
β3	Pancreas	↑ of insulin secretion
	Fat tissue	↑ of lipolysis
	Mast cells	\downarrow of degranulation,
		↓ of release of allergy mediators

DRUGS INFLUENCING ADRENERGIC SYNAPSES

ADRENERGIC DRUGS

ADRENERGIC AGONISTS

(adrenomimetics, adreno-positive drugs) They increase adrenergic processes

ADRENERGIC ANTAGONISTS

adrenoblockers (adrenolytics, adreno-negative drugs) sympatholytics

They decrease adrenergic processes

ADRENERGIC AGONISTS (ADRENOMIMETICS)

ADRENOMIMETICS CLASSIFICATION

A. α-, β-adrenomimetics

- 1. Direct-acting
- Adrenaline hydrochloride (Epinephrine)
- 2. Indirect-acting (sympathomimetics)
- Ephedrine hydrochloride
- **B.** α-adrenomimetics
 - **1. Non-selective**
 - Noradrenaline hydrotartrate (α 1, α 2 > β)
 - 2. Selective
 - Phenylephrine (Mesatonum) (α1)
 - Naphazoline (Naphthyzinum) (α2)
 - Halazolin (Xylometazoline) (α2)
- C. β- adrenomimetics
 - **1. Non-selective**
 - Isoprenaline (Isadrinum) (β1, β2)
 - 2. Selective
 - Dobutamine (β1)
 - Salbutamol (Albuterol) (β2)
 - Fenoterol (β2)

COMPARISON OF ADRENOMIMETICS-CATECHOLAMINS

ADRENALINE PHARMACOKINETICS

- ***is administered SC or topically**
- ***is destroyed in the GI tract**
- is not administered orally
- does not penetrate CNS
- is biotransformed by enzymes in blood
- Control States And Arring 15 min on the intern organs and during 30 min on metabolic processes

ADRENALINE PHARMACODYNAMICS AND INDICATIONS

Pharmacodynamics	Indications
An increase in automaticity,	Heart arrest
conductivity, and contractility of	Shock, collapse
the heart	Bronchial asthma attack
Constriction of blood vessels	Hypoglycemic coma
Elevation of BP	Anaphylactic shock
Bronchodilation	Prolongation of local anethesia
An increase in glucose	Capillary bleeding
concentration in the blood	Acute inflammation
Inhibition of allergy	of mucosa of the nose or eye
Mydriasis	Pupil dilation
A decrease in intra-eye pressure	Open-angle glaucoma

ADRENALINE CARDIAC EFFECTS

ADRENALINE METABOLIC EFFECTS

ADRENALINE SIDE-EFFECTS AND CONTRAINDICATIONS

Side-effects

- Excitement, tremor
- Hypertension
- Arrhythmia
- Hyperglycemia

Contraindications

Hypertension, severe atherosclerosis, heart arrhythmia, diabetes mellitus, hyperthyroidism

EPHEDRINE EPHEDRA EQUISETICA CONTAINING EPHEDRINE

EPHEDRINE PHARMACOKINETICS

- is administered orally, SC, IM, IV, or topically
- is absorbed in the GI tract
- penetrates CNS
- is metabolized in the liver
- is excreted by kidney
- acts during 4-6 hrs

EPHEDRINE MECHANISM OF ACTION

EPHEDRINE PHARMACODYNAMICS AND INDICATIONS

Pharmacodynamics	Indications
Stimulation of CNS, an increase in ability to mental work, euphoria Stimulation of cardiovascular system Vasoconstriction Increase in BP Dilation of bronchi A decrease of GI tract motility	Shock, collapse Anaphylactic shock Bronchial asthma Bronchospasm Bradycardia, A-V block Acute rhinitis Acute conjunctivitis For pupil dilation
Retention of urine Mydriasis	Narcolepsia Myasthenia Enuresis

EPHEDRINE SIDE-EFFECTS

- Wakefulness
- Anxiety, restlessness, insomnia
- Tachycardia
- Palpitation
- Hypertension
- Rash on the skin
- Tolerance and tachyphylaxis
- Drug dependence

***** It should not be used in sportsmen (as doping)!

EPHEDRINE DOPING-EFFECT AND ABUSE POTENTIAL

α – ADRENOMIMETICS

Pharmacodynamics	Indications
Vasoconstriction	Shock, collapse
An increase in BP	Prolongation of local
Mydriasis (without	anesthesia
cycloplegia)	Capillary bleeding
	Rhinitis, conjunctivitis
	Glaucoma
	Diagnostics of eye
	diseases

α – ADRENOMIMETICS PECULIARITIES OF PREPARATIONS

- Noradrenaline is catecholamine; has nonselective action on adrenoceptors, especially on αadrenoceptors; has short-durative action, is administered only by IV infusion for collapse and acute hypotension.
- Phenylephrine (Mesatonum) is noncatecholamine; has selective action on α1adrenoceptors; may be taken orally, administered SC, IM, IV, or topically, duration of action is 4-6 hrs.

Naphazoline and halazolin are noncatecholamines; have selective action on α2adrenoceptors, are used as nasal drops for acute rhinitis, nasal bleeding, and rhinoscopia; cause tolerance and tachyphylaxis.

β – ADRENOMIMETICS

Pharmacodynamics	Indications
An increase in the heart	Acute heart failure
contractions	(Dobutamine)
An increase in the heart	Heart block, bradycardia
rate	(Isoprenaline)
Dilation of bronchi	Bronchial asthma, spasm
A decrease in	of bronchi <i>(Isoprenaline,</i>
myometrium tone	salbutamol, fenoterol)
	Danger of pregnancy
	interruption (Fenoterol)

β– ADRENOMIMETICS PECULIARITIES OF PREPARATIONS

- Isoprenaline (Isadrinum) is catecholamine; has nonselective action on β1- and β2-adrenoceptpors; is administered subligually, by inhalation, or IV; is used for bronchial asthma attack, heart block, some types of cardiogenous shock.
- Salbutamol is non-catecholamine; has selective action on β2-adrenoceptors, acts longer than isoprenaline; does not act on the heart; is used for bronchial asthma, bronchospasm and before bronchoscopia.
- Fenoterol (Partusisten) is non-catecholamine; has selective action on β2-adrenoceptors, acts during 4-6 hrs; does not act on the heart; is used for bronchial asthma and in danger of pregnancy interruption.
- Dobutamine has selective action on β1-adrenoceptors; increases cardiac output; is administered by IV infusion for emergency treatment of acute heart insufficiency and cardiogenous shock.

ADREGERGIC ANTAGONISTS

GROUPS OF ADRENERGIC ANTAGONISTS

ADRENERGIC ANTAGONISTS CLASSIFICATION

A. α-adrenoblockers:

- 1. Non-selective
- Phentolamine
- Tropaphenum
- 2. Selective
- Prazosin
- Doxazasin
- B. β-adrenoblockers:
 - 1. Non-selective
 - Propranolol (Anaprilinum)
 - 2. Selective
 - Metoprolol
 - Talinolol
 - Atenolol
- **C. α-, β-adrenoblockers:**
 - Labetalol
- D. Sympatholytics:
 - Guanetidine (Octadinum)
 - Reserpine

α-ADRENOBLOCKERS MECHANISM OF ACTION

α- ADRENOBLOCKERS

Pharmacodynamics	Indications
Dilation of peripheral blood	Hypertension
vessels	Spasms of peripheral blood vessels
A decrease in BP	(Raynaud's disease)
Improvement of trophy of	Frostbites, trophic ulcers
peripheral tissues	Pheochromacitoma (diagnostics
Stimulation of motility in the	and treatment)
gut	Prostate hyperplasia
Stimulation of exocrinal	
secretion	
A decrease in retention of	
urine in patients with prostate	
hyperplasia.	

α- ADRENOBLOCKERS MAIN CLINICAL USES

α- ADRENOBLOCKERS SIDE-EFFECTS

- Headache, vertigo
- Hypotension
- Weakness
- Insomnia
- Orthostatic collapse
- Tachycardia (for non-selective drugs)
- Vomiting, nausea, diarrhea
- Rhinitis

α- ADRENOBLOCKERS PECULIARITIES OF PREPARATIONS

- Phentolamine hydrochloride has non-selective action (blocks α1 and α2-adrenoceptors); is administered orally or IV; has short duration of action; has many side-effects; causes tachycardia due to the blockage of α2-adrenoceptors and disorders in back-cross regulation of norepinephrine liberation in synapses.
- Prazosin has selective action (blocks α1adrenoceptors); is taken orally; acts during 4-6 hrs; is used for treatment of hypertension; has less sideeffects.
- Doxazosin has selective action (blocks α1adrenoceptors); is taken orally; has more durative and strong action than prazosin; decreases urine retention in patients with adenoma of prostate; is used for treatment of hypertension and adenoma of prostate.

β- ADRENOBLOCKERS PROPRANOLOL (ANAPRILINUM) PHARMACOKINETICS

- is administered orally, IV, topically (eye drops)
- is absorbed in the GI tract
- is bound with proteins in blood serum
- penetrates CNS
- is metabolized in the liver
- is excreted by urine
- acts during 3-4 hrs

PROPRANOLOL MECHANISM OF ACTION

PROPRANOLOL (ANAPRILINUM) PHARMACODYNAMICS AND INDICATIONS

Pharmacodynamics	Indications
A decrease in automaticity, excitability, and conductivity of myocardiumIA decrease of the heart rate (anti-arrhythmic effect)IA decrease in the heart contractility, striking and minute volumeIA decrease in consumption of oxygen by myocardium (antianginal effect)IA decrease in renin secretion in the kidney A decrease in BP (antihypertensive effect)IA decrease in intraocular pressure Sedative actionI	Hypertension Ischemic heart disease (angina pectoris, myocardial infarction) Tachyarrhythmia Hyperthyroidism Migraine Glaucoma

PROPRANOLOL (ANAPRILINUM) SIDE-EFFECTS AND CONTRAINDICATIONS

Side-effects

- Bradycardia
- Hypotension
- Increasing of heart incompetence
- Heart block
- Spasm of bronchi
- Hypoglycemia when insulin is given together
- Fatigue, drowsiness, vertigo, depression
- Disturbances of sexual function in men

Contraindications

Bradycardia, hypotension, severe heart failure, heart block, bronchial asthma, ulcerative disease, diabetes mellitus, disturbances of peripheral blood circulation, pregnancy

COMPARISON OF PROPRANOLOL AND CARDIOSELECTIVE β-ADRENOBLOCKERS

β-ADRENOBLOCKERS PECULIARITIES OF PREPARATIONS

- Metoprolol has cardioselective action (on β1receptors); is taken orally for treatment of hypertension, angina pectoris and arrhythmia; less side-effects: does not cause spasm of bronchi and increase of gastric secretion; may be used in patients with bronchial asthma, ulcerative disease, and diabetes mellitus.
- Talinolol has cardioselective action (on β1receptors); has inner sympathomimetic activity and membrane stabilizing effect (does not decrease heart contractility and conductivity); less sideeffects; less contraindications connected with influence on β1-adrenoceptors.
- Atenolol has cardioselective action (on β1receptors); is similar to metopolol.

α-, β-ADRENOBLOCKERS LABETALOL

- \Box blocks both α and β -adrenoceptors
- action on β-receptors is 3 times more intensive than the action on α-receptors
- less active than propranolol
- less active than phentolamine
- **is taken orally or IV**
- **is indicated for control of hypertension**
- is contraindicated in heart block, spasm of bronchi, pregnancy

SYMPATHOLYTICS

Sympatholytics are presynaptically acting anti-adrenergic drugs.

SYMPATHOLYTICS MECHANISM OF ACTION

RESERPINE

- decreases the storage of norepinephrine
- penetrates CNS, has central and peripheral action
- has antihypertensive, sedative, and antipsychotic action
- **☐** is administered orally, IM or IV
- acts 8-12 hrs
- **is indicated for hypertension**
- may cause disturbances of sleep, depression, bradycardia, spasm of bronchi, stimulation of gastric secretion, diarrhea

RESERPINE CENTRAL AND PERIPHERAL ACTION

GUANETIDINE (OCTADINUM)

- decreases the storage of norepinephrine, decreases mediator release and re-uptake
- does not penetrate CNS, has only peripheral action
- has antihypertensive action, decreases intraocular pressure
- ☐ is taken orally or in the form of eye drops
- action is slow and long (it starts to act in 2-4 days after the beginning of treatment and continues to act during 10-14 days after the ending of treatment)
- is indicated for hypertension, glaucoma, some arrhythmias
- may cause orthostatic hypotension

GUANETIDIN PERIPHERAL ACTION ONLY

THE END

Thank you for attention!