Drags that affect the function of the digestive system

Poltava State Medical University

Department of Pharmacology, Clinical Pharmacology

and Pharmacy

Acid-Controlling Agents

Acid-Related Pathophysiology

- The stomach secretes:
- □ Hydrochloric acid (HCl)
- Bicarbonate
- Pepsinogen
- Intrinsic factor
- Mucus
- Prostaglandins

Glands of the Stomach

- Cardiac
- □ Pyloric
- □ Gastric*
- * The cells of the gastric gland are the largest in number and of primary importance when discussing acid control

Cells of the Gastric Gland

Parietal cells

- Produce and secrete HCl
- Primary site of action for many acid-controller drugs

Mucoid cells

- Mucus-secreting cells (surface epithelial cells)
- Provide a protective mucous coat
- Protect against self-digestion by HCI

Chief cells

- Secrete pepsinogen, a proenzyme
- Pepsinogen becomes *pepsin* when activated by exposure to acid
- Pepsin breaks down proteins (proteolytic)

Hydrochloric Acid

- Secreted by the parietal cells when stimulated by food
- Maintains stomach at pH of 1 to 4
- Secretion also stimulated by:
 - Large fatty meals
 - Excessive amounts of alcohol
 - Emotional stress

Acid-Related Diseases

- Caused by imbalance of the three cells of the gastric gland and their secretions
- Most common: hyperacidity
- Clients report symptoms of overproduction of HCI by the parietal cells as *indigestion*, sour stomach, heartburn, acid stomach

Acid-Related Diseases (cont'd)

- PUD: peptic ulcer disease
 GERD: gastroesophageal reflux disease
- Helicobacter pylori (H. pylori)
 - Bacterium found in GI tract of 90% of patients with duodenal ulcers, and 70% of those with gastric ulcers
 - Combination therapy is used most often to eradicate *H. pylori*

Types of Acid-Controlling Agents

- Antacids
- \Box H₂ antagonists
- Proton pump inhibitors

Antacids: Mechanism of Action

- Promote gastric mucosal defense mechanisms
- Secretion of:
 - Mucus: protective barrier against HCI
 - Bicarbonate: helps buffer acidic properties of HCI
 - Prostaglandins: prevent activation of proton pump which results in U HCI production

Antacids: Mechanism of Action (cont'd)

- Antacids DO NOT prevent the overproduction of acid
- Antacids DO neutralizing the acid once it's in the stomach

Antacids: Drug Effects

Reduction of pain associated with acid-related disorders

- Raising gastric pH from 1.3 to 1.6 neutralizes 50% of the gastric acid
- Raising gastric pH 1 point (1.3 to 2.3) neutralizes 90% of the gastric acid
- Reducing acidity reduces pain

Antacids: Aluminum Salts

- □ Forms: carbonate, hydroxide
- Have constipating effects
- Often used with magnesium to counteract constipation
- Examples
 - Aluminum carbonate: Basaljel
 - Hydroxide salt: AlternaGEL
 - Combination products (aluminum and magnesium): Gaviscon, Maalox, Mylanta, Di-Gel

Antacids: Magnesium Salts

- Forms: carbonate, hydroxide, oxide, trisilicate
- Commonly cause diarrhea; usually used with other agents to counteract this effect
- Dangerous when used with renal failure the failing kidney cannot excrete extra magnesium, resulting in hypermagnesemia

Examples

- Hydroxide salt: magnesium hydroxide (MOM)
- Carbonate salt: Gaviscon (also a combination product)

Combination products such as Maalox, Mylanta

Antacids: Calcium Salts

- Forms: many, but carbonate is most common
- May cause constipation
- □ Their use may result in kidney stones
- Long duration of acid action may cause increased gastric acid secretion (hyperacidity rebound)
- Often advertised as an extra source of dietary calcium
 - Example: Tums (calcium carbonate)

Antacids: Sodium Bicarbonate

- Highly soluble
- Buffers the acidic properties of HCI
- Quick onset, but short duration
- May cause metabolic alkalosis
- Sodium content may cause problems in patients with CHF, hypertension, or renal insufficiency (fluid retention)

Histamine Type 2 (H₂) Antagonists

- Reduce acid secretion
- All available OTC in lower dosage forms
- Most popular drugs for treatment of acid-related disorders
 - cimetidine (Tagamet)
 - famotidine (Pepcid)
 - ranitidine (Zantac)

H₂ Antagonists: Mechanism of Action

- Block histamine (H₂) at the receptors of acid-producing parietal cells
- Production of hydrogen ions is reduced, resulting in decreased production of HCl

H₂ Antagonists: Indications

- GERD
- PUD
- Erosive esophagitis
- Adjunct therapy in control of upper GI bleeding
- Pathologic gastric hypersecretory conditions (Zollinger-Ellison syndrome)

H₂ Antagonists: Side Effects

- Overall, less than 3% incidence of side effects
- Cimetidine may induce impotence and gynecomastia
- □ May see:

Headaches, lethargy, confusion, diarrhea, urticaria, sweating, flushing, other effects

Proton Pump Inhibitors

Proton Pump

- The parietal cells release positive hydrogen ions (protons) during HCl production
- This process is called the "proton pump"
- H₂ blockers and antihistamines do not stop the action of this pump

Proton Pump Inhibitors: Mechanism of Action

Irreversibly bind to H+/K+ ATPase enzyme

Result: achlorhydria—ALL gastric acid secretion is blocked

O1999 Addison Wesley Longman, Inc.

Proton Pump Inhibitors: Drug Effect

- Total inhibition of gastric acid secretion
 - Iansoprazole (Prevacid)
 - omeprazole (Prilosec)*
 - rabeprazole (AcipHex)
 - pantoprazole (Protonix)
 - esomeprazole (Nexium)

*The first in this new class of drugs

Proton Pump Inhibitors: Indications

- □ GERD maintenance therapy
- Erosive esophagitis
- Short-term treatment of active duodenal and benign gastric ulcers
- Zollinger-Ellison syndrome
- □ Treatment of *H. pylori*−induced ulcers

Proton Pump Inhibitors: Side Effects

Safe for short-term therapy
 Incidence low and uncommon

Other Drugs: sucralfate (Carafate)

- Cytoprotective agent
- □ Used for stress ulcers, erosions, PUD
- Attracted to and binds to the base of ulcers and erosions, forming a protective barrier over these areas
- Protects these areas from pepsin, which normally breaks down proteins (making ulcers worse)

sucralfate (Carafate) (cont'd)

- □ Little absorption from the gut
- May cause constipation, nausea, and dry mouth
- May impair absorption of other drugs, especially tetracycline
- Binds with phosphate; may be used in chronic renal failure to reduce phosphate levels
- Do not administer with other medications

misoprostol (Cytotec)

- Synthetic prostaglandin analog
- Prostaglandins have cytoprotective activity
 - Protect gastric mucosa from injury by enhancing local production of mucus or bicarbonate
 - Promote local cell regeneration
 - Help to maintain mucosal blood flow

misoprostol (Cytotec) (cont'd)

- Used for prevention of NSAID-induced gastric ulcers
- Doses that are therapeutic enough to treat duodenal ulcers often produce abdominal cramps, diarrhea

Antidiarrheals and Laxatives

Diarrhea

Abnormal frequent passage of loose stool or

Abnormal passage of stools with increased frequency, fluidity, and weight, or with increased stool water excretion

Diarrhea (cont'd)

Acute diarrhea

- Sudden onset in a previously healthy person
- □ Lasts from 3 days to 2 weeks
- □ Self-limiting
- Resolves without sequelae
- Bacterial, viral, protozoal, nutritional
Diarrhea (cont'd)

Chronic diarrhea

- □ Lasts for more than 3 weeks
- Associated with recurring passage of diarrheal stools, fever, loss of appetite, nausea, vomiting, weight loss, and chronic weakness
- Tumors, diabetes, irritable bowel syndrome

Antidiarrheals: Mechanism of Action

Adsorbents

Coat the walls of the GI tract

- Bind to the causative bacteria or toxin, which is then eliminated through the stool
- Examples: bismuth subsalicylate (Pepto-Bismol), kaolin-pectin, activated charcoal

Antidiarrheals: Mechanism of Action (cont'd)

Anticholinergics

- Decrease intestinal muscle tone and peristalsis of GI tract
- Result: slowing the movement of fecal matter through the GI tract
- Examples: belladonna alkaloids, atropine

Antidiarrheals: Mechanism of Action (cont'd)

Intestinal flora modifiers

- Bacterial cultures of Lactobacillus organisms work by:
 - Supplying missing bacteria to the GI tract
 - Suppressing the growth of diarrheacausing bacteria
- Example: L. acidophilus (Lactinex)

Antidiarrheals: Mechanism of Action (cont'd)

Opiates

- Decrease bowel motility and relieve rectal spasms
- Decrease transit time through the bowel, allowing more time for water and electrolytes to be absorbed
- Examples: loperamide (Imodium), diphenoxylate (Lomotil)

Antidiarrheal Agents: Side Effects

Adsorbents

- Increased bleeding time
- Constipation, dark stools
- Confusion, twitching
- Hearing loss, tinnitus, metallic taste, blue gums

Antidiarrheal Agents: Side Effects (cont'd)

Anticholinergics

- Urinary retention, hesitancy, impotence
- Headache, dizziness, confusion, anxiety, drowsiness
- Dry skin, rash, flushing
- Blurred vision, photophobia, increased intraocular pressure
- Hypotension, hypertension, bradycardia, tachycardia

Antidiarrheal Agents: Side Effects (cont'd)

Opiates

- Drowsiness, sedation, dizziness, lethargy
- Nausea, vomiting, anorexia, constipation
- Respiratory depression
- Bradycardia, palpitations, hypotension
- Urinary retention
- Flushing, rash, urticaria

Constipation

- Abnormally infrequent and difficult passage of feces through the lower GI tract
- Symptom, not a disease
- Disorder of movement through the colon and/or rectum
- Can be caused by a variety of diseases or drugs

Laxatives: Mechanism of Action

- **Bulk forming**
- High fiber
- Absorbs water to increase bulk
- Distends bowel to initiate reflex bowel activity
- Examples:
 - methylcellulose (Citrucel)
 - Polycarbophil (FiberCon)

Emollient

- Stool softeners and lubricants
- Promote more water and fat in the stools
- Lubricate the fecal material and intestinal walls
- □ Examples:
 - Stool softeners: docusate salts (Colace, Surfak)
 - Lubricants: mineral oil

Hyperosmotic

- □ Increase fecal water content
- Result: bowel distention, increased peristalsis, and evacuation

□ Examples:

- sorbitol (increases fluid movement into intestine)
- Iactulose (Chronulac)

Saline

- Increase osmotic pressure within the intestinal tract, causing more water to enter the intestines
- Result: bowel distention, increased peristalsis, and evacuation

- □ Saline laxative examples:
 - magnesium sulfate (Epsom salts)
 - magnesium hydroxide (MOM)
 - magnesium citrate
 - sodium phosphate (Fleet Phospho-Soda, Fleet enema)

Stimulant

- Increases peristalsis via intestinal nerve stimulation
- Examples:
 - castor oil (Granulex)
 - senna (Senokot)

Laxatives: Indications

Laxative Group

Bulk forming

<u>Use</u>

Acute and chronic constipation Irritable bowel syndrome

Diverticulosis

Acute and chronic constipation

Softening of fecal impaction; facilitation of BMs in anorectal conditions

Emollient

Laxatives: Indications (cont'd)

Laxative Group

Hyperosmotic

<u>Use</u> Chronic constipation Diagnostic and surgical preps

Saline

Acute constipation Diagnostic and surgical preps Removal of helminths

Laxatives: Indications (cont'd)

Laxative Group

Stimulant

<u>Use</u>

Acute and chronic constipation

Diagnostic and surgical bowel preps

Laxatives: Side Effects

Bulk forming

- Impaction
- Fluid overload
- Emollient
 - Skin rashes
 - Decreased absorption of vitamins
- Hyperosmotic
 - Abdominal bloating
 - Rectal irritation

Laxatives: Side Effects (cont'd)

□ Saline

- Magnesium toxicity (with renal insufficiency)
- Cramping
- Diarrhea
- Increased thirst
- Stimulant
 - Nutrient malabsorption
 - Skin rashes
 - Gastric irritation
 - Rectal irritation

Antiemetic and Antinausea Agents

Definitions

Nausea

- Unpleasant feeling that often precedes vomiting
- Emesis (vomiting)
 - Forcible emptying of gastric, and occasionally, intestinal contents
- Antiemetic agents
 - Used to relieve nausea and vomiting

VC and CTZ

Vomiting center (VC)

- Chemoreceptor trigger zone (CTZ)
 - Both located in the brain
 - Once stimulated, cause the vomiting reflex

Indications

- Specific indications vary per class of antiemetics
- □ General use: prevention and reduction of nausea and vomiting

Mechanism of Action and Indications

Anticholinergic agents (ACh blockers)

- Bind to and block acetylcholine (ACh) receptors in the inner ear labyrinth
- Block transmission of nauseating stimuli to CTZ
- Also block transmission of nauseating stimuli from the reticular formation to the VC
- Scopolamine
- Also used for motion sickness

Mechanism of Action

- Antihistamine agents (H₁ receptor blockers)
 - Acts by binding to H₁ and M-cholinergic receptors
 - Prevent cholinergic stimulation in vestibular and reticular areas, thus preventing emesis
 - Diphenhydramine (Benadryl, Dimedrol), promethazine (Phenergan)
 - Also used for nonproductive cough, allergy symptoms, sedation

Mechanism of Action (cont'd)

Neuroleptic agents

- Block dopamine receptors on the CTZ
- chlorpromazine (Thorazine), prochlorperazine (Compazine)
- Also used for psychotic disorders, intractable hiccups

Mechanism of Action (cont'd)

Prokinetic agents

- Block dopamine in the CTZ
- Cause CTZ to be desensitized to impulses it receives from the GI tract
- Also stimulate peristalsis in GI tract, enhancing emptying of stomach contents
- Metoclopramide (Reglan)
- Also used for GERD, delayed gastric emptying

Thank you for attention!